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a b s t r a c t

A method for tracking of sample components during liquid chromatography–mass spectrometry (LC–MS)
method development has been proposed. The method manages to, fully automatically and without user
intervention, find the chromatographic peaks in the data sets, discriminate them to sample components
and track them when the separation conditions have been changed. The algorithm utilises the resolution
obtained from all considered data sets and has the ability to discriminate the non informative parts.
eywords:
iquid chromatography
ass spectrometry

hemometrics
eak detection
eak tracking

The technique has a great sensitivity even in cases where a majority of the tracked components cannot
easily be spotted by means of traditional total ion chromatogram (TIC) or base peak chromatogram (BPC)
representations. The method was tested on an experimental sample using six different columns and
an average of 79% of the suggested sample components could be successfully tracked at a minimum
area of 0.05% of the main component in the sample. 66 components with 79–92% of the total suggested
component area were able to be tracked between all data sets. The method could be used to rapidly

ring d
investigate selectivity du

. Introduction

Keeping track of the sample components eluting from a chro-
atographic system under various conditions is a critical task

uring liquid chromatography (LC) method development. Unless
he peaks are correctly assigned, erroneous retention models or
onclusions will be obtained resulting in sub-optimal results and/or
rolonged time and efforts required for the development process.

In the pharmaceutical industry, drug impurity profiling is an
mportant area for which highly efficient LC methods are called for.
rug impurity profiling is a generic term for the determination of
hemical entities not defined as the drug substance [1]. There are
egulations regarding how these impurities must be scrutinised and
ontrolled by the pharmaceutical industry. The statute can be sum-
arised as being that the drug developers must be able to report

he presence of and quantify all degradation products down to
.05% of the active drug substance, whereas degradation products
own to 0.1% also need to be identified structurally. The stability

f the drug substance is commonly investigated by exposing the
ubstance of interest to an accelerated ageing process generated
y light, low/high pH, humidity and elevated temperature. This
reatment often results in an unknown mixture of the drug sub-
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ifferent types of separation conditions.
© 2010 Elsevier B.V. All rights reserved.

stance and the degradation impurities. In addition, contaminants
originating from preparation such as solvent residues, unwanted
side-reactions and packaging may also be present.

To address this complicated analytical task, the LC system is
often coupled on-line to both a diode array detector (DAD) and
a mass spectrometer (MS) operated in full scan mode, thereby
enabling the simultaneous detection of both light absorbing and
ionisable compounds. After selection of a suitable pH and buffer
based on the structure of the drug and/or scouting experiments,
the LC conditions are often optimized in a two-step process. Firstly,
columns with different selectivity are screened in order to iden-
tify a column which provides a good peak shape, gives sufficient
retention and which separates the largest number of components.
Another reason for this screening is to determine which compo-
nents are present in the sample(s). Following this, the operating
conditions for the selected column are identified, often with the
focus on the gradient profile and temperature. In both of these
optimization steps it is important to track the components in the
generated LC-DAD–MS chromatograms. The first step is the most
complicated since the peaks can move around more or less ran-
domly due to the selectivity differences of the columns tested. Thus,
the component tracking method described in this work was tested

on such a data set.

The instrument set-up for the screening of several columns
usually contains an automatic column switching valve, where the
columns to be tested are selected to be as orthogonal in selectivity
as possible. This column selection is preferably aided by a column

dx.doi.org/10.1016/j.chroma.2010.10.083
http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
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haracterisation database [2]. This enables a relatively straight-
orward, time efficient and comprehensive analysis at different
eparation conditions. The subsequent data analysis, however, is

major bottleneck during the method development. The peak
racking step is often performed manually, by comparing the cor-
esponding UV and MS spectra, and since little or no information
s available for the sample mixture, the task is tedious and error
rone.

The most intuitive manual method for the matching of LC-
AD–MS peaks is by inspecting and comparing the peak intensities
r areas beneath the graph in the UV chromatograms. Several peaks
ay, however, have similar sizes, which thus makes it impossi-

le to perform the identification by mere intensity. The next step
ould then be to utilise the spectral information from each com-
onent in the sample mixture. Unfortunately, the signal to noise
atio of UV chromatograms and UV spectra is usually relatively
oor at the 0.05% level. As a consequence, peak tracking based
n these parameters becomes uncertain. An advantage associated
ith MS spectra is that they are often more component specific

han the UV spectra, and thus easier to use in order to distin-
uish between different sample components. Some components
n a sample mixture can, however, have very similar mass spec-
ra (especially when soft ionization methods, such as electrospray,
re applied), and in these cases the use of spectral correlation
lone may provide multiple candidates for matching. A combina-
ion of intensity/area information and spectral information about
he components in a sample would thus be advantageous for
he accurate matching of chromatographic peaks between data
ets.

Comparing MS spectra by an automatic approach is also sub-
ect to difficulties. Interfering high intensity background signals
nd noise originating from uncontrollable experimental variances
an blur the data and suppress the similarities between matching
ample components [3]. It is thus important that the spectral infor-
ation for each component in the sample is preserved regardless

f the separation conditions. Present data sets commonly contain
housands of mass channels, so some processing is required to
educe the otherwise significant number of possible matches that
equire to be tested. In addition, several decently separated com-
onents in the chromatogram generated from one set of separation
onditions can partially, or totally, co-elute (or simply not elute at
ll) during the next selected conditions. To be able to efficiently
crutinise the automatic results, it is thus important that co-eluted
omponents can be treated individually and that no match is reg-
stered if a component does not have a corresponding component
n the other data set.

Automated spectral correlation techniques were developed
xtensively during the late 1960s and 1970s for different ana-
ytical techniques [4–12], but have also received more attention
ecently [13–33]. Rasmussen and Isenhour reported in 1979 that
here are basically two main elements in action when spectra are
o be matched, namely the data encoding method, where the parts
f the original spectra to be used in the comparison are determined,
nd the comparison algorithm, which describes how spectra are to
e compared [4]. They also mention the use of prefilters, which are
sed to rule out improbable candidates at an early stage in order to

ncrease performance. Albeit the instrumental and computational
owers have improved since then, the current approach is funda-
entally based on these elements. Few investigations consisting

f a fully automatic approach for tracking components from the
ame sample but during different separation conditions have been

eported in the literature. Swartz and Brown describe a method
here one of their experiments is used as a reference library in

rder to compare, track and check the purity of the sample com-
onents when some chromatographic conditions are changed [15].
utual peak matching (MAP) is a method for LC-DAD proposed by
gr. A 1217 (2010) 8195–8204

Bogomolov and McBrien which adjoins data from the same mix-
ture sampled at various conditions and a key set of spectra are
used for matching [29]. van Zomeren and co-workers used the
method of augmented iterative target transformation factor anal-
ysis to both resolve overlapping peaks and to track them between
the different data sets simultaneously [30]. COMET, which is an
abbreviation for comprehensive orthogonal method evaluation, is
reported as being a fully automated method for tracking LC–MS
components during impurity profiling in a paper by Xue et al. [31].
Dixon et al. proposed a method for peak detection and match-
ing of pre-processed GC–MS data. Mass channels are examined
individually for peaks which are then grouped into components
and compared by a similarity measurement [32]. Zeng et al. pro-
posed a similar method to the current one in which the information
from two systems is utilised in order to determine the number of
common components between them and to extract pure spectra
by using an alternative moving window factor analysis (AMWFA)
[33].

In this work, we present a peak tracking method which com-
bines strategies and ideas from previously developed methods
for various tasks. These were refined to various degrees to better
harmonize to our requirements. The aim was to fully automat-
ically track and highlight even the smallest components in a
sample while simultaneously disregard irrelevant information. The
method starts from individual unprocessed raw data and no specific
knowledge about its structure is required. It is capable to enhance
and extract the informative peaks by automatically determine the
essential algorithm parameters. The outcome from this peak detec-
tion is a noise- and baseline-free reconstruction in which peaks
belonging to the same sample component are further evaluated by
the algorithm. These components are then compared for similarity
in terms of relative spectral and total intensity between the investi-
gated data sets. The algorithm provides new data for each included
data set containing the component chromatogram and correspond-
ing spectrum together with a list of selected and rejected matches
and is capable to automatically discriminate false positives and
other artefacts.

2. Theory

A flowchart of the new component tracking algorithm can be
viewed in Fig. 1. The most important steps will be further explained
in the sections below. For a more complete understanding, we also
refer to supplementary material and to the references given.

2.1. LC–MS data

A single data set obtained from an LC–MS instrument which
scans several pre defined mass to charge (m/z) ratios discretely over
time can be regarded as an m × n matrix, D, with m rows (m/z) and n
columns (time). D can be separated into a matrix A which contains
the useful analytical signals (the peaks), B, which contains the low
frequency signals (the background), and E which contains the high
frequency signals (the noise) according to Eq. (1).

D = A + B + E (1)

If we reduce B and E, by applying a peak detection algorithm in
the time domain and only store the detected peaks, each column,
n, in the resulting data matrix, Dpd, will obtain a mass spectrum
with fewer but more characteristic mass ions corresponding to
the informative parts of the original data set. Dpd can in turn be

deconvoluted by Eq. (2) into j × n concentration profiles C and j × m
mass spectra S, where j is the number of components in the sample
mixture.

Dpd = STC + R (2)
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combinations of the original variables where the first explains as
Fig. 1. Flowchart of the component matching algorithm.

n this case, R is the residual error and T denotes the transpose of
he matrix S. The deconvolution can be seen as the bunching of all
he chromatographic peaks in Dpd which have approximately the
ame retention time (tR) into one component specific elution pro-
le in C with a corresponding spectrum in S. If the deconvolution

s successful, R is minimised and information about the reten-
ion times, spectra and the number of components in the sample

ixture is readily available for further processing. The bunch-
ng procedure is often, however, problematic since components

ay co-elute. Many methods for resolving overlapped peaks have
een developed throughout previous years. They are referred to
s multivariate curve resolution (MCR) techniques, which almost
xclusively solve the problem by searching for linear combinations
f the data.

If genuine components are obtained consisting of single, Gaus-
ian shaped concentration profiles with the correct intensities and
ith the corresponding pure spectra, the components can act as
reference library for the data sets from the same sample but
hich have been acquired during different separation conditions.

he library spectra could be used to find positions in time in the
ew data set where a similar spectrum is obtained by calculat-

ng some sort of similarity index. In addition, the second data set
hould be deconvoluted into concentration profiles and spectra in
he same manner in order to reduce the interference from the back-
round and noise and to decrease the calculation time during the
atching procedure by reducing the number of possible matching

andidates. Pure components are, however, difficult to obtain and
o utilise the resolution power from two separation conditions, the

omponents should be compared both forward and backward so
hat components that are unable to be resolved (i.e. is not pure)
fter deconvolution in one of the data sets have a greater chance to
e successfully discriminated.
r. A 1217 (2010) 8195–8204 8197

2.2. Peak detection

The applied peak detection method has been previously
reported [34]. This method requires no a priori information and
has been reported to work well with similar datasets to those
used in the current investigation. The method basically combines
two of the most commonly used approaches for peak detection
by firstly matching the peaks with a reference peak shape and
then selecting the peaks with a threshold based on the noise level.
The necessary settings such as typical peak widths and noise level
are automated. The algorithm functions in the chromatographic
domain and is applied to each extracted ion chromatogram (XIC),
where it is theoretically easier to discriminate peaks from noise. It
utilises a Gaussian second derivative (GSD) digital filter that simul-
taneously enhances the analytical signals and removes the baseline
[35]. The resulting data set is a baseline and noise free reconstruc-
tion of the original data set with similar intensities and peak widths,
but with a slightly different shape in the chromatographic domain
(The typical resulting peak shape will more resemble the upper
2/3 of a Gaussian peak due to the structure of the filter coeffi-
cients). The peak detection algorithm adapts linearly to expected
changes in peak width over time (most evident for isocratic data).
Raw data peaks deviating from the expectations will receive a
peak width in the corresponding reconstruction more close to the
expected value. In such circumstances the area will also be influ-
enced to some extent. The reconstructed peaks will however be
better suited for the forthcoming step where the peaks belonging
to the same sample component will be bunched. Moreover, the
algorithm can be optimized to either detect low signal-to-noise
(S/N) peaks or to be more sensitive to the detection of over-
lapping peaks and is functional for both isocratic and gradient
data.

2.3. Peak classification and bunching

During this step, each component chromatogram and corre-
sponding spectrum is reconstructed by bunching relevant peaks
with principal component analysis (PCA) in a method referred to
as the principal component variable grouping (PCVG), which is well
described originally in the work by Ivosev et al. [36].

To increase the accuracy and reduce the complexity, each peak
detected and reconstructed data set, Dpd, was first divided into a
number of sub-sets before being subjected to PCVG. Each subset
was selected from Dpd by first finding the start and end points of
the chromatographic peak with the highest intensity in the data set
and then group all the peaks with maximum intensity within this
retention time interval into a peak cluster. A peak bunching step as
outlined below is then performed on this subset and the result is
stored in a new data set and is removed from Dpd before the next
peak cluster is formed. The sub-set formation is repeated until all
the peaks have been processed. Dividing peaks into smaller clusters
in this manner is effortless when using peak detected data and this
reduces the calculation times and it is often easier to estimate the
number of components in each cluster than in the full data set. In
addition, the peak widths are theoretically about the same within
each peak cluster which can otherwise have an impact on some of
the critical eigenvalues from the PCA.

PCVG basically initially performs PCA on Pareto scaled data in
order to determine the number of relevant principal components
(PC) to use, which ultimately corresponds to the number of chem-
ical components in the sample. The PCs are uncorrelated linear
much of the variability of the data and each succeeding PC explains
as much of the variability as possible in the remaining data. In
the current case, the variables are each m/z ratio. Correlated vari-
ables are oriented in the same direction in the multidimensional
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C-space and are grouped by firstly finding the variable with the
ongest distance from the origin and then include all variables

ithin a pre-set angle. The original sub-set chromatograms in Dpd
orresponding to the grouped variables in the PC loading space
re summed and become the first preliminary component chro-
atogram. The previously grouped variables are removed from

he PC-space before the procedure is repeated until the number
f component chromatograms corresponds to the number of rel-
vant principal components. All peaks are then assigned to the
orresponding preliminary chromatograms depending on where
he highest correlation within the elution time window is obtained.
he resulting output is herein referred to as initial component
hromatograms and spectra. The cut-off level for the number of
elevant PCs and the size of the angle can be set arbitrarily, which
oth influences the results. From this method, each initial compo-
ent chromatogram, Ci, is the sum of all the reconstructed peaks

rom Dpd which have been assumed to belong to the same compo-
ent according to the above described bunching procedure, while
ach initial component spectrum, Si, is the sum of each recon-
tructed peak over the retention time range that belongs to the
entioned initial component. Each component spectrum and chro-
atogram contain only signals originating from the previously

eak detected data set and thus does not contain the noise and
ackground signals which are present in the original data. This
eans that the resulting spectra can be used directly in the com-

arison with other spectra without further considerations such as
nly comparing a pre-determined number of top intensity peaks
8,10], or the requirement to remove illogical peaks [5]. The PCVG
ased method cannot, however, separate a coeluted peak in the
ame mass channel into two components if it has not been prop-
rly differentiated during the peak detection step. An additional
ultivariate curve resolution (MCR) step, such as alternating least

quares (ALS) [37] or iterative target transformation factor anal-
sis (ITTFA) [38], could be used to refine the results further but a
ommon problem associated with these kinds of MCR techniques is
otational ambiguity which means that several mathematical solu-
ions to Eq. (2) are feasible and that the optimal solution might
iolate to the common theory of chromatography [39]. Methods for
orcing the solution to behave in as physicochemically correct man-
er as possible have been developed, but it is difficult to monitor
he successfulness of these modifications automatically. The cur-
ent algorithm was instead developed to handle possible impurities
n the initial components by utilising the fact that the components
an elute differently during the different separation conditions and
his is used to extract purer components from the initial bunched
omponents at a later stage. Thus the PCVG settings were set so
hat the total number of initial components is under- rather than
verestimated.

.4. Component matching

When all the peaks in the data set have been bunched into initial
omponent chromatograms with their corresponding spectra, the
rocess is repeated for a secondary data set, with the same sample,
ut different separation conditions, so that C1 and S1 and C2 and S2
re obtained from Dpd1 and Dpd2 respectively. The next step is to
hen compare the spectra of each initial component in the primary
ata set with the spectra from each initial component in the sec-
ndary set. A similarity value is calculated between all the initial
omponents in both data sets having at least one mass ion in com-
on and the matches are ranked according to the index. Techniques
or eliminating unlikely spectral matches have been reported [8],
ut such processing always includes a risk of erroneous discrimi-
ation and is less important with the present computational and
torage power [17]. Comparing initial component spectra with the
urrent method, however, can reduce the number of necessary cal-
gr. A 1217 (2010) 8195–8204

culations by some order of magnitude in comparison to comparing
every spectrum in the unprocessed data, depending on the com-
plexity of the sample and the current S/N levels. The similarity
index used herein is dependent on the direction of the comparison
(i.e. comparing one component spectra in S1 with one component
in S2 is not the same as vice versa). If the top ranked candidates
are the same initial components regardless of the direction com-
pared, the mass ions common to both initial components are stored
in new matrixes S∗

1,i and S∗
2,i with the corresponding concentra-

tion profiles, C∗
1,i and C∗

2,i. These are the final components with
chromatograms and spectra and are herein simply referred to as
the components. No other potential matching initial component
that has received less than the highest ranking position is stored
nor are the mismatched top candidates before the next compo-
nent is considered. In this manner, the algorithm does not require
any manual arbitrary threshold for the obtained similarity index
for determining which match can pass this criterion as for other
methods [5,32]. When all initial components have been processed,
the spectra that matched between the data sets (now stored in S*)
are removed from S before the procedure is repeated. This enables
a higher possibility to extract minor mixture components within
the predominant effluent components in the subsequent iteration.
This step resembles the method described by Atwater et al. where
the subtraction of reference spectra to measured GC–MS spectra
allowed an improved identification of minor components in the
resulting residual spectrum [12] and was later implemented in the
BPM method described by McLafferty and Stauffer [21]. The proce-
dure continues until no top ranked candidates are matching after
testing all remaining components. All matched spectra are ideally
true and pure component matches and the unmatched residual is
ideally a true component that can find a match in the next itera-
tion step or a component that is false or not present in the other
data set.

2.5. Similarity index calculation

The approach of using one or a combination of some sort of
similarity measurement for matching spectra has been consid-
ered in several works such as determining the number of common
ions [7,25], utilising probability theory [5,21], using the match
angle, with or without modifications [13,15–18,26,28,32], the sim-
ilar Pearson correlation coefficient [19,22,23,26], the absolute,
Euclidean or other distances [7,9,11] or by some sort of other sim-
ilarity measurements [6,8,13,14,27]. In the current investigation,
three types of similarity measurements are calculated between
the current target initial component in the primary data set and
each initial component of the group of candidate initial compo-
nents in the secondary data set. These are then weighed to a
single index value. The index should preferably generate a high
value when the same initial components, acquired during different
separation conditions, are compared and a low value when com-
paring to any other initial component. Ideally, the index should be
able to discriminate spectral dissimilarities between true matching
components due to instrumental and random artefacts and com-
ponents that are not the same but have similar spectra. Generally,
however, this will require a more complex algorithm. The imple-
mented measures of similarity in the current work only consider
the part of the initial component spectra, S, common to both tar-
get, S′

T, and candidate, S′
C, so that S′

Ti
∩ S′

Ci
. A candidate is defined

as a component with at least one common mass ion to the tar-

get.

The first similarity measurement included is the squared Pear-
son correlation coefficient, a in Eq. (3), where the relation between
the spectra in the target, ST, and in the current candidate, SC, are
evaluated so that the inner relation of all mass ions of the compo-
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ents should be similar in order to score a high value.

=

⎡
⎣

∑
i(S

′
Ti

− S̄′
T)(S′

Ci
− S̄′

C)√∑
i(S

′
Ti

− S̄′
T)

2∑
i(S

′
Ci

− S̄′
C)

2

⎤
⎦

2

(3)

ince it is generally more difficult to estimate the correct intensity
evel at lower S/N levels, decent correlation of the higher spectral
ntensities should be given a higher weight and this can be achieved
y calculating the un-centred correlation b, also named the spec-
ral contact or contrast angle, match angle or dot product distance,
ccording to Eq. (4). This is very similar to Eq. (3), apart from the fact
hat each spectrum is not centred around its mean. Reducing the
mpact from a lower abundance spectrum in other similarity mea-
urements has previously been used, simply by removing them [5],
hereas, for others, the impact of the larger peaks is reduced [11].

=
∑

i

S′
Ti√∑

iS
′2
Ti

S′
Ci√∑

iS
′2
Ci

(4)

he last similarity value, c, is calculated by Eq. (5) with the goal of
haracterising the intensity differences between the components.
ince the same amount of the sample mixture is injected in both
xperiments for this type of application, and identical experimen-
al conditions are used with the exception of different columns,
he areas of the chromatographic peaks are expected to be near
onstant. Coeluting peaks can, however, cause ion suppression [3].

= 2
∑

i

S′
Ti

S′
Ci∑

i(S
′
Ti

)2 +
∑

i(S
′
Ci

)2
(5)

ach of the three similarity values varies between 0 and 1 and are
ndependent of the designation of ST and SC (i.e. gives equal value for
he same pair of compared spectra). The three terms are combined
o a single score value, named the similarity index, I. Since it is
enerally easier to score a high value of a and b when the number
f mutual spectra indices is low, these are weighed by means of the
xplained variance in the target component, v, as shown in Eq. (6),

= av + bv + c (6)

here v is determined according to Eq. (7). Combining two simi-
arity measurements for the inner relation of the spectra (a and b)
o the index increases the impact of that property in contrast to
he similarity of the areas (c) and is also indicated to provide better
esults in terms of correct matches in comparison to only using a
r b alone for the investigated data sets. As only the variance of the
arget is considered, the reversed designations of the component
pectra provide different results as ITC does not give the same value
s ICT. This is made intentionally in order to utilise the combined
eparation power from both data sets as explained in Section 2.4.

=
∑

i

S′2
Ti√∑

iS
2
Ti

(7)

ith decently matching components, the score will be close to 3.
omponent matching with poor values of the similarities men-
ioned above will result in a score close to zero. If the highest
imilarity index is obtained between the target and a candidate and
hat particular candidate also obtains the highest similarity index
ith the target when switching primary and secondary data sets,

he match is considered to be the best possible. The probability that

he correct match is obtained is dependent on the similarity to the
econd best match [8,18]. Complementary methods for increasing
he similarity of spectra has been reported by others such as weigh-
ng intensities from different mass numbers [17,28], but this was
ot applied in the current method.
Fig. 2. TICs of the data sets, sampled with different columns. (A) Symmetry C18,
(B) Altima HP C18 Amide, (C) Fluofix 120E, (D) Zorbax SB-CN, (E) ACE 3 phenyl, (F)
Platinum EPS C18.

3. Experimental

3.1. LC–MS analysis

The proposed component tracking method was evaluated with
experimental data sets which included typical variations in noise
level, baseline drifts, signal distortions and other realistic artefacts
that are usually present in such systems.

Six LC–MS data sets of one genuine sample of drug substance
NN from AstraZeneca, spiked with 4% contaminants, was acquired
using electrospray ionization and an Agilent Technologies 1100
Series MSD operated in the positive ion scan mode. A linear gradi-
ent from 5 to 95% ACN in water during 30 min was used. An acetic
acid/ammonium hydrogen carbonate (3.9/10.0 mM) buffer giving a
pH of 6.5, ion strength of 10 mM and a buffer capacity of 5.7 mM/pH
unit was used. The injection volume was 5 �l. The columns used
were 150 mm × 3 mm packed with ∼3 �m particles: (A) Symmetry
C18 (Waters Corp., Milford, MA), (B) Alltima HP C18 Amide (Alltech
Assosiates Inc., Deerfield, IL), (C) Fluofix 120E (Thermo Hypersil-
Keystone, Bellefonte, PA), (D) Zorbax SB-CN (Agilent Technologies
Inc., Santa Clara, CA), (E) ACE 3 phenyl, Advanced Chromatography
Technologies, Aberdeen, UK), (F) Platinum EPS C18 (Alltech Assosi-
ates Inc., Deerfield, IL). The corresponding data sets are referred to
as data set A–F and a TIC of each data set is shown in Fig. 2. Each
data matrix consists of 5401 rows (m/z) and 703 columns (scans).

3.2. Data analysis

All calculations were performed using the MATLAB 7.0.4.365
(R14) Service Pack 2 (The MathWorks Inc., Natick, MA) on a PC
with 3.0 GHz Intel Pentium 4 CPU and 4GB of RAM. The experi-
mental data sets were converted from the Analyst LC–MS software
(Applied Biosystems, Foster City, CA) by the wiff-to-matlab plugin.

3.3. Variable settings

The peak detection algorithm does not require any user input
and was used with default settings as described in [34]. The PCVG
method requires both a cut-off level for the number of significant
components generated by PCA and the angle in the loading space
for which the peaks in the sub-set are divided into concentration

profiles and spectra. Both these settings have an impact on the out-
come of the number of initially detected components and how well
they are discriminated in the case of overlapping peaks. If these set-
tings are set so that very poor resolving power is achieved for both
data sets, there will be a greater risk that the final concentration



8200 M.J. Fredriksson et al. / J. Chromatogr. A 1217 (2010) 8195–8204

Table 1
Detected peaks and tracked components for the data sets.

Primary data set Detected peaks Initial components Secondary data and number of tracked components

A B C D E F

A 5267 297 263 164 199 238 271
B 4818 294 263 204 213 248 233
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C 4541 328
D 6534 331
E 7622 332
F 6660 344

rofiles and spectra remain impure. In the present work, a static
ut off level of 1% of the cumulative eigenvalues was used for the
etermination of the number of components. This includes a great
eal of the total variation in each subset and proved to provide
easonable results since the majority of the original noise compo-
ents is absent due to the peak detection step. The angle used was
et to 45◦, and this provided a reasonable trade-off between the
esolution and the degree of allowed peak overlap.

. Results and discussion

The results are presented with focus on the performance and
ccuracy of the algorithm when it comes to finding and track-
ng components when one data set is compared to another. Some
esults, however, are also given for the situation when several data
ets are to be matched simultaneously.

.1. Peak detection

Using the peak detection algorithm at maximum sensitivity to
ow S/N levels increases the risk of detecting false positives. Addi-
ional pre-processing can diminish this problem and could include
spike removal and/or an intensity threshold cut-off. The data sets
ere, however, used in an untouched manner in order to be able

o investigate the performance deterioration caused by false posi-
ives and to be able to find and track even the smallest component
n the sample by utilising the full performance of the instrument.
he number of peaks found in the different data sets varied between
bout 4500 and 7600 as seen in Table 1. The large difference in the
umber of found peaks can be explained, in addition to the varia-
ion in the number of false positives, by the difference in the noise
evel in the data sets since only peaks passing a S/N level of 10 after
ignal enhancement are included by the algorithm. Moreover, all
omponents in the sample mixture do not elute during the sam-
ling period in some data sets so their presence is not recognised
y the algorithm. An example can be seen in Fig. 2 where two late
eaks in the TIC of data set C and E appear to be absent in data set
. Missing peaks due to too short sampling periods can and should
aturally be avoided by for example sampling at a longer time and
t a higher degree of organic modifier at the end of the runs. Missing
eaks can also be the result of different adducts formation in the

on source due to different residues present in the columns used in
pite of the fact that these had been thoroughly conditioned.

In Table 1, the number of tracked components is given, when
sing different data sets to be primary and secondary.

.2. Peak classification and bunching

In the next step, peaks with similar retention times are assigned

nto initial components. The number of detected initial components
n the data sets was 294–344 which can be seen in Table 1.

The initial components proposed by the algorithm for data set C
ere investigated manually. It was found, as expected, that many of

he initial components actually were false positives due to detected
164 204 235 201 231
199 213 235 231 206
238 248 201 231 214
271 233 231 206 214

spikes or low intensity noise signals surrounded by zero signals
due to a minimum intensity threshold set by the instrument soft-
ware during data acquisition. In such cases, the peak detection step
is unable to estimate the noise level accurately and noise signals
above the threshold can be regarded as peaks. The manual exami-
nation revealed that there were both many spikes in the data and
many mass channels with portions of noise signal set to zero, gen-
erating both initial components consisting of only false positives
but also initial components that partially consist of genuine peaks
and partially of false positives. These artefacts can influence the
performance of the algorithm. It was discovered that out of a total
number of 328 initial components, as many as 177 were manu-
ally regarded as false, and these were mainly positioned at an early
stage in the retention time. 35 initial components were regarded
as being ambiguous and it was not possible to determine manually
whether these were genuine or not due to low S/N levels together
with few spectral indices. Thus, only 116 initial components (35%)
were regarded as being assumed to contain true chemical informa-
tion. These components did, however, include 83% of the estimated
total area. Some of the automatically proposed initial components
could be suspected of being impure, but this was not further inves-
tigated at this point. It is assumed that the other data sets have
a similar distribution of false and informative components which
complicates the following matching step since both the number of
false targets and candidates increases.

4.3. Component matching

The spectral similarity index between each initial component
in the primary data set is now calculated to the equivalents in
the secondary data set and vice versa with the aim of finding the
best matching components. As shown in Table 1, the number of
tracked components varies between 164 and 271 depending on
compared data sets and is identical between the same pair regard-
less of which one selected as primary and secondary. This means
that the obtained results are insensitive to dataset assignation and
no assumptions about the unprocessed or processed data sets are
required. In Fig. 3, the 201 components that were automatically
tracked between data set C and E are shown and the 25 components
with the highest intensities are marked. These 25 matches were
manually controlled and were correct except for the component
numbers 12 and 14, which should be inter-mutually exchanged.
These two components have an almost identical mass spectrum
of near equal intensities and are thus difficult to distinguish. The
smallest of the 25 marked peaks is number 5 with an estimated
area of 0.3% of the main component.

The results obtained when using each of the data sets as the
primary, and the subsequent data set in terms of alphabetic order
as the secondary (data set F used A as secondary), were further

investigated manually. The accuracy of the resulting component
tracking together with the selectivity of the different columns can
be viewed in Fig. 4, where the retention times of all the automati-
cally matched components are plotted between the investigated
data sets and manually classed depending on algorithm perfor-
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Fig. 3. Proposed component tracking between the primary data set C (a) and the secondary data set D (b). Numbers indicate the 25 most intense components.

Fig. 4. Retention times of the automatically tracked sample components in two data sets. Each component is marked depending on the success rate of the algorithm according
to manual inspection. (a) Data set A primary vs. data set B secondary, (b) B primary vs. C secondary, (c) C vs. D, (d) D vs. E, (e) E vs. F, (f) F vs. A. Markers: (�) correct match, (©)
erroneous match between genuine components, (�) matched false positives, (♦) ambiguous matches. It should be noted that selectivity differences between the compared
LC columns can lead to correct matches that substantially deviates from the diagonals in these plots.
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ig. 5. The number of correct matches (-) and the total number of included compon
rimary data sets, (a) A primary, B secondary, (b) B primary, C secondary, (c) C prim
econdary.

ance. It was concluded that most of the matches are correctly
stablished automatically for these data sets, an average of 65% of
he tracked components was clearly correct, whereas 3% was clearly
n erroneous match between genuine components, and 13% was
learly not a genuine component (but still found a match in the
econdary data set, genuine or not). The remaining components
19%) were regarded as ambiguous due to difficulties in manually
stablishing the correct match.

The main reasons for ambiguous matches are that some com-
onents contain equal spectra and are of similar heights making
hem difficult to differentiate, even manually, or difficult to validate
s a genuine component due to low S/N levels. False component
atches are often due to unexpected differences in intensity or

he presence of false positives that surprisingly often had a coun-
erpart present in both data sets. The majority of the false and
mbiguous tracked components had, however, a small area and
sually consisted of a single mass ion. Removing components based
n single mass ions reduces the number of ambiguous and false
ositive matches by approximately 50% and the number of erro-
eous matches between genuine components by approximately
0%, whereas approximately 5% of the assumed correct matches
re lost. Together, the single mass ion components had a total esti-
ated area of 0.4% of the estimated total explained area on average

nd, as such, do not represent a substantial fraction of the informa-
ive parts of the data but did, however, significantly increase the
umber of correct matches.

In Fig. 5, the proportion of correct matches (according to man-
al assessment) together with the total number of components are
hown for each data set used as a primary with the subsequent
ata set used as a secondary when disregarding tracked compo-
ents below a certain area threshold. The area threshold is based

n the area of the main component in the sample and is only
hown between 0 and 1% in the figures. Since the number of consid-
red components decreases monotonically at larger area cut-offs,
single erroneous match with high enough area can influence the
roportion of correct matches negatively within the shown area
(–) at different minimum allowed area of the included components in the different
secondary, (d) D primary, E secondary, (e), E primary, F secondary, (f) F primary, A

interval (c.f. local maxima in Fig. 5b). The sample composition and
the S/N levels in the data determine the minimum trackable area. At
0.05% level, the total number of correct matches reaches an average
of 79% in the current data sets. It is evident that many of the tracked
components have a small area and these are more difficult to match
correctly. An average of 57% of the total number of tracked com-
ponents had an estimated area above the 0.05% level. Combining
a spike filter prior to peak detection with an area threshold before
or after the peak bunching step could probably significantly dimin-
ish the problem associated with the erroneous matches. Another
approach would be to increase the S/N cut-off level during peak
detection. The default minimum S/N level allowed is 10, but with
the enclosed S/N enhancement attribute of the peak detection algo-
rithm used, the actual level can be even lower. At default settings in
the peak detection step, peaks can theoretically obtain an increased
S/N level of 0.55

√
d, where d is the number of data points describing

the chromatographic peak. In the current application, d is approxi-
mately 9, which means that peaks of an original S/N level of about
6 can be detected and, in theory, can be further processed. It is thus
probable that a decrease in the sensitivity during peak detection
could diminish the number of ambiguous components. Moreover,
a minimum allowed similarity index value could be implemented
during or after matching, but such a setting would be less intuitive
for the analyst.

4.4. Residual components

The discriminated initial components containing the residual
spectra should ideally not find a match during manual inspection.
319 of 328 of the initial components in data set C still contained one
or more mass ions and it was possible to track 18 of these manu-

ally to a similar component in data set D. The main part of these
components has lower S/N levels in one data set so that some or
all of the ingoing peaks are never detected during the peak detec-
tion step. In some cases, the components contain artefacts (e.g.
spikes) of higher intensities which obstruct the true match from
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ig. 6. Superimposed total ion chromatograms based on the residual spectra of prim

ecoming the top candidate in one direction. It is often the case
hat these are positioned just under the top candidate in the list
f matching candidates. The total estimated area of these 18 com-
onents (excluding artefacts) was 1.4% of the total explained area.

t is possible that by removing the spikes prior to peak detection,
he number of missed matching components can probably be sig-
ificantly reduced. Chromatograms based on the residual spectra
hould not change considerably when matching between differ-
nt data sets except at positions where true peaks are absent due
o, for example, different adduct formations or because a sampling
ime range is too short. It is common for polar compounds with a
ow molecular weight to elute early and to generate signals of lower
uality due to salts and residues that influence the electrospray and

nduce ion suppression. Fig. 6 shows that the chromatograms based
n residual spectra are very similar regardless of the secondary data
et used during the first minutes of the chromatograms. This indi-
ates that these parts of the data sets are really non-informative
nd essentially lack chemical meaning since it cannot be matched
egardless of separation condition used in the secondary data set.

.5. Matching between several data sets
It is often of interest to match components between several data
ets simultaneously. The proposed method can be used for match-
ng components in a third or an arbitrary number of data sets by
tilising the results from the previously matched data. The final
atched spectra in S∗

1 or S∗
2 from data set one and two can be used
ata set (a) A, (b) B, (c) C, (d) D, (e) E, (f), F, after matching with all other data sets.

as the initial components for the next data set, S3. In this way, only
components present in S∗

1 and S∗
2 are searched for in S3. Then the

final components in S∗
3 are used as the initial components and are

compared to S4 and so forth. When all the data sets have been pro-
cessed, the components in the final data set, S∗

n, are used as the
initial components for the comparison with S1. The process can
then be repeated once so that all data sets are processed with only
those components present in all the considered data sets. By this
approach, components that co-elute in several of the data sets can
be successfully discriminated if they are decently separated in at
least one data set. Constraints can be used to exclude irrelevant
components or to increase the number of correct matches. In our
case n = 6 and with the additional constraints that each component
must have a minimum area of 0.05% and also a minimum number
of two mass ions. This resulted in 66 components where the total
number of clearly correct matches was 87.4% and the number of
clearly erroneous matches was 2.3%. The remainder were regarded
as being ambiguous. In Fig. 7, a truncated TIC of the data set A based
on the components that could be tracked in all 6 data sets is visi-
ble. The movement in the retention time for a selection of correctly
matching components in data set B–F is also shown. The minimum
component area was estimated to 0.06 ± 0.007% (95% conf. level)

of the main component. The estimated summed area of the cor-
rectly matched components present in all data sets was 79–92% of
the total estimated component area. This indicates that the com-
ponents of both small and large quantities could be tracked in the
data sets.
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Some parts of the algorithm are computational intense and gen-
rally not fully optimized. The time required to perform a complete
eak tracking is highly dependent on the number of detected peaks
nd components in the data. Further, the type of constraints used
hen several data sets are to be matched are of importance. For

he six data sets used in this investigation, the peak detection step
equire approximately 70–90 s per data set, the peak bunching
tep approximately 10 s and the peak tracking step (between two
ata sets) required 90–150 s on a standard hardware equipped lap-
op computer. The time needed for tracking components between
ll six data sets (after peak detection and bunching) without the
onstraints used above was approximately 10 min. Enabling con-
traints typically reduces calculation times significantly.

. Conclusions

Manual tracking of sample components acquired during dif-
erent separation conditions is often very troublesome and time
onsuming since the elution order is highly unpredictable. The
roposed method is capable of finding and tracking sample compo-
ents automatically between two data sets, but can also be used to
rack common components between an arbitrary number of data
ets. The confidence in the automatically tracked components can
e increased by, for example, excluding proposed matches under a
pecified area or by setting the minimum number of allowed mass
ons. Components not found in the second data set are excluded
rom the results. A list containing the best match together with all
ther candidates are presented so that the user can be alerted when
andidates with a similar score to the top candidate are present.

omponents with a component area below the 0.05% level could
e tracked in the current data sets, even in cases where some of
he components are totally coeluted in one data set. In the current
pplication, components in the sample were tracked when differ-
nt columns were used, but the algorithm should also be functional
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when other separation conditions are to be tested, such as changing
the temperature or the gradient profile.
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